LOGIN

RSS Facebook Twitter YouTube
GLOSSARY       

SEARCHGLOSSARY

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

PROFILESEARCH

Avatar

Please consider registering
guest

sp_LogInOut Log In sp_Registration Register

Register | Lost password?
Advanced Search

— Forum Scope —




— Match —





— Forum Options —





 

Minimum search word length is 4 characters - maximum search word length is 84 characters

sp_Feed Topic RSS sp_TopicIcon
Functional morphology of the fin rays of teleost fishes
May 30, 2013
8:09 am
Avatar
Matt
Málaga, Spain
Admin
Forum Posts: 8239
Member Since:
June 13, 2011
sp_UserOfflineSmall Offline

Journal of Morphology - early view

Abstract

Ray-finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray-finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm−1 in the proximal, unsegmented portion of the fin ray and 0.065 mm−1 in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms−1 (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm−1. Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10−6 Nm2. In computational fluid dynamic simulations of the fin-vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small-amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray-finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid perturbations encountered by swimming fish.

 

Just downloaded it so let me know if you'd like a copy. Smile

 

Cake or death?
Forum Timezone: Europe/Paris

Most Users Ever Online: 246

Currently Online: BillT
1 Guest(s)

Currently Browsing this Page:
1 Guest(s)

Devices in use: Desktop (2)

Top Posters:

Stefan: 1567

Plaamoo: 1257

mikev: 1134

Malti: 1099

Mark Duffill: 1012

Member Stats:

Guest Posters: 0

Members: 30501

Moderators: 0

Admins: 2

Forum Stats:

Groups: 4

Forums: 10

Topics: 4603

Posts: 36641

Newest Members: Talha, VelzevulGR, Eva, RoyC, Gilbert Fox

Administrators: dunc: 1323, Matt: 8239