LOGIN

RSS Facebook Twitter YouTube
GLOSSARY       

SEARCHGLOSSARY

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

PROFILESEARCH

Avatar

Please consider registering
guest

sp_LogInOut Log In sp_Registration Register

Register | Lost password?
Advanced Search

— Forum Scope —




— Match —





— Forum Options —





 

Minimum search word length is 4 characters - maximum search word length is 84 characters

sp_Feed Topic RSS sp_TopicIcon
Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes
July 15, 2015
11:18 am
Avatar
Matt
Málaga, Spain
Admin
Forum Posts: 8239
Member Since:
June 13, 2011
sp_UserOfflineSmall Offline

Molecular Ecology - accepted article

Abstract

Evolution of ecomorphologically relevant traits such as body shapes is important to colonise and persist in a novel environment. Habitat-related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat-related divergence in the body shape of Gnathopogon fishes, a novel example of lake–stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream-dwelling Gnathopogon elongatus, the sister speciesGnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region, and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction-site associated DNA sequencing-derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape-related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape-related traits. Each QTL was mostly located on different genomic regions, while colocalised QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system.

Cake or death?
Forum Timezone: Europe/Paris

Most Users Ever Online: 246

Currently Online:
1 Guest(s)

Currently Browsing this Page:
1 Guest(s)

Devices in use: Desktop (1)

Top Posters:

Stefan: 1567

Plaamoo: 1257

mikev: 1134

Malti: 1099

Mark Duffill: 1012

Member Stats:

Guest Posters: 0

Members: 30505

Moderators: 0

Admins: 2

Forum Stats:

Groups: 4

Forums: 10

Topics: 4603

Posts: 36641

Newest Members: CarpCharacin, theresajean, [email protected], raj, Talha

Administrators: dunc: 1323, Matt: 8239