LOGIN

RSS Facebook Twitter YouTube
GLOSSARY       

SEARCHGLOSSARY

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

PROFILESEARCH

Avatar

Please consider registering
guest

sp_LogInOut Log In sp_Registration Register

Register | Lost password?
Advanced Search

— Forum Scope —




— Match —





— Forum Options —





 

Minimum search word length is 4 characters - maximum search word length is 84 characters

sp_Feed Topic RSS sp_TopicIcon
Systematic implications of brain morphology in potamotrygonidae (Chondrichthyes: Myliobatiformes)
November 27, 2015
1:47 pm
Avatar
Matt
Málaga, Spain
Admin
Forum Posts: 8239
Member Since:
June 13, 2011
sp_UserOfflineSmall Offline

Journal of Morphology - early view

Abstract

The gross brain morphology, brain proportions, and position of cranial nerves in all four genera (Potamotrygon, Plesiotrygon, Paratrygon, and Heliotrygon) and 11 of the species of the Neotropical stingray family Potamotrygonidae were studied to provide new characters that may have a bearing on internal potamotrygonid systematics. The brain was also studied in four other stingray (Myliobatiformes) genera (Hexatrygon, Taeniura, Dasyatis, and Gymnura) to provide a more inclusive phylogenetic context for the interpretation of features of the brain in potamotrygonids. Our results indicate, based on neuroanatomical characters, that the genera Paratrygon and Heliotrygon are sister groups, as are the genera Potamotrygon and Plesiotrygon, agreeing with previous morphological and molecular phylogenetic studies. Both groups of genera share distinct conditions of the olfactory tracts, telencephalon and its central nuclei, hypophysis and infundibulum, morphology and orientation of the metencephalic corpus cerebelli, orientation of the glossopharyngeal nerve, and overall encephalic proportions. The corpus cerebelli of Paratrygon and Heliotrygon is interpreted as being more similar to the general batoid condition and, given their phylogenetic position highly nested within stingrays, is considered secondarily derived, not plesiomorphically retained. Our observations of the corpus cerebelli of stingrays, including Hexatrygon, corroborate that the general stingray pattern previously advanced by Northcutt is derived among batoids. The morphology of the brain is shown to be a useful source of phylogenetically informative characters at lower hierarchical levels, such as between genera and species, and thus, has significant potential in phylogenetic studies of elasmobranchs.

Cake or death?
Forum Timezone: Europe/Paris

Most Users Ever Online: 246

Currently Online:
1 Guest(s)

Currently Browsing this Page:
1 Guest(s)

Devices in use: Desktop (1)

Top Posters:

Stefan: 1567

Plaamoo: 1257

mikev: 1134

Malti: 1099

Mark Duffill: 1012

Member Stats:

Guest Posters: 0

Members: 30512

Moderators: 0

Admins: 2

Forum Stats:

Groups: 4

Forums: 10

Topics: 4603

Posts: 36641

Newest Members: drwonga, dg, Jamieson22, FraziersAquarium, world renowned

Administrators: dunc: 1323, Matt: 8239