LOGIN

RSS Facebook Twitter YouTube
GLOSSARY       

SEARCHGLOSSARY

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

PROFILESEARCH

Parabotia sp. 'PB01'

Classification

Order: Cypriniformes Family: Botiidae

Distribution

This fish was imported into Singapore during 2012 from Sichuan province, southwestern China, much of which is dominated by a portion of the Yangtze River and its tributaries, but collection details are unknown.

Habitat

Unconfirmed but presumably a riverine loach favouring clear, well-oxygenated, running water with substrates of rocks and/or gravel.

Other members of the genus are present in bedrock and boulder-filled headwater streams as well as larger, turbid river channels depending on the time of year.

Maximum Standard Length

Presumably at least 100 mm.

Aquarium SizeTop ↑

An aquarium with a base measuring 120 ∗ 45 cm or similar should be the minimum considered.

Maintenance

Best maintained in a set-up designed to resemble a flowing stream with a substrate of variably-sized rocks, gravel and some water-worn boulders.

This can be further furnished with driftwood roots and branches arranged to form some shaded spots while lengths of PVC piping or similar can be used to provide additional cover. Hardy plants such as MicrosorumBolbitis or Anubias spp. can be grown attached to the décor.

Like many fishes that naturally inhabit running waters it’s intolerant to the accumulation of organic wastes and requires spotless water at all times in order to thrive. It also does best if there is a high level of dissolved oxygen and a decent level of water movement in the tank so external filters, powerheads, etc., should be employed in order to obtain the desired effect.

As stable water conditions are obligatory for its well-being this fish should never be added to biologically-immature aquaria.

Water Conditions

Temperature: 20 – 24 °C

pH6.0 – 7.5

Hardness90 – 357 ppm

Diet

Likely to be an opportunistic, benthic predator feeding on insects, crustaceans and perhaps fish fry in nature.

Captive specimens are unlikely to prove fussy but should be offered a varied diet comprising live or frozen bloodwormTubifex, chopped shellfish, earthworms and good quality, sinking dried foods.

Behaviour and CompatibilityTop ↑

Parabotia spp. are generally quite peaceful with conspecifics and as with other botiids seem to appreciate being maintained in a group, meaning that 3-4 specimens should ideally be the minimum purchase

Sexual Dimorphism

Sexually-mature females should be heavier-bodied than males.

Reproduction

Unrecorded.

NotesTop ↑

The name of this fish is unclear with the fact that diagnoses for several members of this genus do not appear to exist in the English language making identification even trickier. It’s not common in the aquarium trade, either.

Parabotia was initially described in 1872 and remained valid until 1936 when Fang synonymised it with Hymenophysa. It was reestablished by Chen (1980) and has been accepted since with Nalbant (2002) listing the defining characters as: body slimmer than in Leptobotiasuborbital spine bifurcated (divided in two); cheeks scaled; body with vertical stripes; a black spot at the base of the caudal-fin.

In their definition Naseka & Bogutskaya (2004) list the characters above plus: relatively slim caudal peduncle (depth fitting 1.5-1.6 times in its length); pelvic-fin reaching midway between pelvic-fin origin and anal-fin origin; anus located distinctly posterior to dorsal-fin base and relatively closer to anal-fin base (midway between tip of pelvic-fin and anal-fin origin); dark body stripes relatively thin and numerous.

Modern studies have resulted in various changes to the taxonomy of both the family Botiidae and its constituent genera although Parabotia has been mostly unaffected.

It’s been widely considered a genetically distinct grouping since Nalbant (2002), having previously been considered a subfamily (Botiinae) of the family Cobitidae. Nalbant also moved some previous members of Botia into the new genus Yasuhikotakia based on a number of morphological characters.

Later Kottelat (2004) made further modifications to the taxonomy, raising Chromobotia for B. macracanthus and confirming that species previously included in the genus Hymenophysa should instead be referred to Syncrossus.

The former alteration was based on colour pattern plus some morphological characters and the latter because Hymenophysa not only represents a spelling mistake (McClelland’s original spelling was Hymenphysa) but is a junior synonym of Botia.

More recently Kottelat (2012) erected the genus Ambastaia to accommodate A.nigrolineata and A. sidthimunki, two former members of both  Botia and Yasuhikotakia.

As a result of these works the family Botiidae is thus divided into two tribes within which Botia appears to be the most basal lineage:

Tribe Leptobotiini – LeptobotiaParabotiaSinibotia.
Tribe Botiini – AmbastaiaBotiaChromobotiaSyncrossusYasuhikotakia.

Phylogenetic studies by Tang et al. (2005) and Šlechtová et al. (2006) have largely confirmed this system to be correct although the latter disagreed with the placement of Sinibotia, finding it to be more closely related to the tribe Botiini.

Ambastaia nigrolineata and A. sidthimunki were found to be more closely-related to both Sinibotia and Syncrossus than Yasuhikotakia, despite being considered members of the latter at the time. Šlechtová et al. also proposed the use of subfamily names under the following system:

Subfamily Leptobotiinae – LeptobotiaParabotia.
Subfamily Botiinae – BotiaChromobotiaSinibotiaSyncrossusYasuhikotakia.

Within these Botia appears to be the basal, i.e., most ancient, lineage and in a more-detailed phylogenetic analysis Šlechtová et al. (2007) confirmed the validity of the family Botiidae with the genera listed above as members rather then being grouped into subfamilies. This more recent, simpler system is the one we currently follow here on SF.

Parabotia spp. also possess sharp, motile, sub-ocular spines which are normally concealed within a pouch of skin but erected when an individual is stressed, e.g., if removed from the water. Care is therefore necessary as these can become entangled in aquarium nets and those of larger specimens can break human skin.

Botiids are also susceptible to a condition commonly referred to as ‘skinny disease’ and characterised by a loss of weight. This is especially common in newly-imported specimens and is thought to be caused by a species of the flagellate genus Spironucleus.

It’s treatable although the recommended medication varies depending on country. Hobbyists in the UK tend to use the antibiotic Levamisole and those in the United States Fenbendazole (aka Panacur).

References

  1. Chen, J.-X., 1980 - Zoological Research 1(1): 3-26
    A study on the classification of the botoid fishes of China.
  2. Kottelat, M., 2012 - Raffles Bulletin of Zoology Supplement 26: 1-199
    Conspectus cobitidum: an inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei).
  3. Kottelat, M., 2004 - Zootaxa 401: 1-18
    Botia kubotai, a new species of loach (Teleostei: Cobitidae) from the ataran River basin (Myanmar), with comments on botiinae nomenclature and diagnosis of a new genus.
  4. Nalbant, T. T., 2002 - Travaux du Museum d'Histoire Naturelle 'Grigore Antipa' 44: 309-333
    Sixty million years of evolution. Part one: family Botiidae (Pisces: Ostariophysi: Cobitoidea).
  5. Nalbant, T. T., 2004 - Travaux du Museum d'Histoire Naturelle 'Grigore Antipa' 47: 269-277
    Hymenphysa, Hymenophysa, Syncrossus, Chromobotia and other problems in the systematics of Botiidae. A reply to Maurice Kottelat.
  6. Naseka, A. M. and N. G. Bogutskaya, 2004 - Zoosystematica Rossica 12: 279-290
    Contribution to taxonomy and nomenclature of freshwater fishes of the Amur drainage area and the Far East (Pisces, Osteichthyes).
  7. Tang, Q., H. Liu, R. Mayden and B. Xiong, 2006 - Molecular Phylogenetics and Evolution 39(2): 347-357
    Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes).
  8. Šlechtová, V., J. Bohlen and H. H. Tan, 2007 - Molecular Phylogenetics and Evolution 44(3): 1358-1365
    Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella.

No Responses to “Parabotia sp. ‘PB01’”


Leave a Reply

You must be logged in to post a comment.